

Colle du 25/05 - Sujet 1 Intégration et représentation matricielle

Question de cours. Démontrer la formule de la matrice de la composition.

Exercice 1. Soit $\varphi: x \mapsto \int_{x}^{2x} e^{-t^2}$. Faire une étude complète de φ .

Exercice 2. Soit E un espace de dimension 3 et $\mathscr{B}=(e_1,e_2,e_3)$ une base de E. Soit $f\in\mathscr{L}(E)$ tel que $\mathrm{mat}_{\mathscr{B}}(f)=0$

$$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}. \text{ On pose } \mathscr{B}' = (e_1 - e_3, e_1 - e_2, e_2 + e_3 - e_1).$$

- 1. Montrer que \mathscr{B}' est une base de E et préciser $P_{\mathscr{B},\mathscr{B}'}$ et $P_{\mathscr{B}',\mathscr{B}}$.
- 2. Déterminer $\operatorname{mat}_{\mathscr{B}'}(f)$ par deux méthodes.

Colle de mathématiques PTSI1

2022-2023

Colle du 25/05 - Sujet 2 Intégration et représentation matricielle

Question de cours. Enoncer et démontrer le théorème fondamental de l'analyse.

Exercice 1. Déterminer la limite quand $n \to +\infty$ de $\frac{1}{n^2} \prod_{k=1}^n (k^2 + n^2)^{1/n}$.

Exercice 2. Soient $p \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^p = I_n$. On pose également $B = I_n + A + \cdots + A^{p-1}$, $u \in \mathcal{L}(\mathbb{R}^n)$ l'endomorphisme canoniquement associé à A et $v \in \mathcal{L}(\mathbb{R}^n)$ celui associé à B.

- 1. Montrer que $\operatorname{Im}(v) = \operatorname{Ker}(u \operatorname{Id}_{\mathbb{R}^n})$.
- 2. Montrer que Ker $(v) = \text{Im} (u \text{Id}_{\mathbb{R}^n})$.
- 3. Montrer que Ker(v) et Im(v) sont supplémentaires.
- 4. Déterminer la matrice de v dans une base adaptée à Ker (v) et Im (v).

Colle de mathématiques PTSI1

2022-2023

Colle du 25/05 - Sujet 3 Intégration et représentation matricielle

Question de cours. Démontrer la formule de la matrice du vecteur image.

Exercice 1. Soit $n \ge 2$. Pour tout $P \in \mathbb{R}_n[X]$, on pose $f(P) = \frac{P(X+1) + P(X-1)}{2}$ et $g = f - \mathrm{Id}_{\mathbb{R}_n[X]}$.

- 1. On suppose n=4.
 - (a) Déterminer la matrice de f dans la base canonique. En déduire le noyau et l'image de f.
 - (b) Même question pour q.
- 2. On reprend n quelconque. Soit $P \in \mathbb{R}_n[X]$. Déterminer $\deg(g(P))$ en fonction de celui de P.
- 3. En déduire le noyau et l'image de g.

Exercice 2. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{4}} \sin^n(t) dt$.

Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est monotone et converge.

Déterminer la nature de $\sum_{n\in\mathbb{N}}I_n$.